氟化物玻璃在两束激光作用下的上转化 三维立体显示

刘名扬 张瑞萍

(装甲兵工程学院基础部,北京 100072)

摘要 研究了两束激光作用下的上转换三维(3D)立体显示,所用材料为 ZBLAN: Pr,Yb 氟化物玻璃。所用的两束 激光是波长分别为 960 nm(半导体激光器)和 820 nm(Ti 宝石激光器)。对 Pr³⁺离子双频上转换发光进行了研究, 分析了上转换发光强度与抽运光强度和离子掺杂浓度的关系,从而得出了实现较清晰双频上转换 3D 立体图像的 实验条件。ZBLAN 玻璃为双频上转换 3D 立体显示的基质材料,主要由于其有非常好的声子光谱——声子频率小于 580 cm⁻¹;当激光强度很小时,上转换荧光强度将随着两抽运激光强度的增加而线性增加;ZBLAN 玻璃中 Pr³⁺离子和 Yb³⁺离子的最佳掺杂摩尔分数为 0.5%和 1.5%。

关键词 材料;三维立体显示;双频上转换;ZBLAN 玻璃

中图分类号 O482.31;O433.5 文献标识码 A

doi: 10.3788/CJL201138.1006003

Up-Conversion Three-Dimensional Volumetric Display of Fluoride Glass under Two Beams of Lasers

Liu Mingyang Zhang Ruiping

(Department of Fundamental Courses, Academy of Armored Force Engineering, Beijing 100072, China)

Abstract Two beams of pumping up-conversion three-dimensional (3D) volumetric display which is based on a ZBLAN: Pr, Yb fluoride glass are investigated. The lasers employed are infrared semiconductor laser with wavelength 960 nm and tunable Ti gem laser with wavelength of 820 nm, respectively. The two frequency up-conversion luminescence of Pr^{3+} ion is investigated. The relation between up-conversion fluorescence intensity, pumping lasers intensity, and ion doped concentration is analyzed, and the experimental conditions to realize the clear two frequency up-conversion 3D display are therefore obtained. ZBLAN glass is selected as two-frequency up-conversion 3D volumetric display foundation material for it has perfect phonon spectrum whose maximum phonon frequency is 580 cm⁻¹; up-conversion fluorescence intensity increases linearly with augment of two beams of pumping lasers intensity when lasers intensity are very weak; optimal doped concentration of Pr^{3+} and Yb^{3+} ions are 0.5% and 1.5% mole fraction, respectively.

Key words material; three-dimensional display; two-frequency up-conversion; ZBLAN glasses OCIS codes 160.5690; 140.5560; 160.2750; 190.7220

1 引

言

稀土元素频率上转换发光是基于吸收多个光子 后自发辐射的一种荧光现象^[1~13],在近几年的发光 材料研究中,频率上转换发光越来越受到科技工作 者的重视。上转换发光有一系列广泛的应用,例如: 激光、三维(3D)立体显示、生物应用、荧光防伪、成 像、存储、温度传感器和交通等。双频上转换 3D 立 体显示^[7,8]是其中的新应用之一,双频上转换 3D 立 体显示克服了已有的 3D 显示技术的更新频率低、 动态显示困难、图形分辨率低、3D 跟踪范围小的缺 点,是一种自体视的、全新的 3D 立体显示技术。它 不仅可以再现各种事物的立体图像,而且还可以显 示经计算机处理的高速运动物体的立体图像。要得 到清晰的上转换图像,对上转换材料有一定的要求。

收稿日期: 2011-05-16; 收到修改稿日期: 2011-06-02

基金项目:总装基础科学创新项目(2009ZB016)资助课题。

作者简介:刘名扬(1977—),男,讲师,主要从事光学方面的研究。E-mail: lmy771204@126.com

首先,两抽运激光的波长都在红外;同时还要求相对 这两级抽运激光的单频双光子或单频多光子的上转 换效率很低,这样才能避免产生非寻址点的暗亮线。 由于 ZBLAN 氟化物玻璃有很好的发光性能,截止 声子能量较低,且又能拉制成光纤或制成大块固体 材料而有利于激光或 3D 立体显示的操作,本文以 ZBLAN 氟化物玻璃为基质材料对 Pr³⁺双频上转换 发光进行了研究,分析了上转换发光强度与抽运光 强度和离子掺杂浓度的关系。

2 Pr³⁺,Yb³⁺共掺上转换发光

频率上转换 3D 立体显示的基本原理是利用两 束相互垂直的红外激光交叉作用于上转换材料上, 如图 1 所示,经过上转换材料的两次共振吸收,发光 中心电子被激发到高激发能级,再向下能级跃迁就 可能产生可见光的发射,这样的上转换材料空间中 的一个点就是一个发光的亮点。如果使两束激光的 交叉点依照某种轨迹在上转换材料中做 3D 空间的 寻址扫描,那么两束激光的交叉点所扫描的地方应 当是一条可以发射可见荧光的亮带,即可以显示出 同激光交叉点运动轨迹相同的 3D 立体图形。

图 1 双频上转换 3D 立体显示原理 Fig. 1 3D display principle of two-frequency up-conversion

实验所用的样品是稀土离子掺杂的氟化物玻 璃,这种玻璃由 ZrF₄,BaF₂,LaF₃,AlF₃,NaF,PrF₃ 和 YbF₃ 共熔后慢慢冷却得到的透明玻璃体,玻璃 体经研磨、抛光后即成待用样品,简称 ZBLAN:Pr, Yb 玻璃。ZBLAN 玻璃是一种五重的氟锆酸盐玻 璃,主要成分为 ZrF₄,但是单独的 ZrF₄ 很难形成玻 璃态。碱土金属离子的引入形成玻璃至关重要,其 中最有利的就是加入 BaF₂。镧系氟化物的引入对 玻璃态的氟锆酸盐稳定性也有很好的作用,经过测 试发现 LaF₃ 的效果最好,加入 AlF₃ 可以减小玻璃 的结晶趋势,加入 NaF 有两个作用,首先它可以有 效地扩大玻璃系统的成玻区域,另外还可以用它来 调节玻璃的折射率。

所用的两束激光分别来自红外半导体激光器和 可调谐掺 Ti 宝石激光器,半导体激光器的波长是 960 nm;Ti 宝石激光器的输出波长是 820 nm,将两 束激光的交叉点作用于 ZBLAN:Pr,Yb 玻璃,交叉 点就是显示的寻址点,寻址点的发光亮度由两束抽 运激光强度来控制。在实际操作中,固定 960 nm 激光的强度,通过改变 820 nm 的激光强度来实现 寻址点的灰度控制。荧光收集系统采用 SPEX 的 Fluorolog-2 型荧光分光光度计测量。

图 2 是 Pr^{3+} 和 Yb^{3+} 在 ZBLAN 玻璃中的吸收 光谱和各吸收峰所对应的能级。从图中可以看出 Pr^{3+} 在 Ti 宝石激光器的激发范围内(814~ 924 nm)没有基态吸收; Yb^{3+} 在 810~1072 nm 这一 红外波段内有一宽度很大的吸收峰,并且除了这一 吸收峰(能级²F_{5/2})外, Yb^{3+} 其他的能级都处在紫外 区域,因此在激光作用下, Yb^{3+} 不存在激发态吸收。 图 3 是根据吸收光谱得出的 Pr^{3+} 和 Yb^{3+} 的能级 图。从图 3 可以看出, Yb^{3+} 的²F_{5/2}能级和 Pr^{3+} 的¹G₄能级能量相当,两能级之间可以发生相互作 用,产生能量的传递,因此 Yb^{3+} 对 Pr^{3+} 具有增敏作 用。由于 Yb^{3+} 具有结构简单的能级,离子相互作用 过程很简单,所以增敏作用效果很好。从图 3 可以 看出, Pr^{3+} 的³P₂, $^{3}P_{1}$, $^{3}P_{0}$ 的吸收峰几乎是重叠的, 它们的能量很接近,所以下面统称为³P能级。

图 2 Pr³⁺/Yb³⁺共掺的吸收光谱

Fig. 2 Absorption spectrum of $\mathrm{Pr}^{^{3+}}/\mathrm{Yb}^{^{3+}}$ co-doped ions

ZBLAN 玻璃中的 Pr^{3+} 和 Yb^{3+} 的双频上转换 过程如图 4 所示。由图 2 的吸收谱可知,在两束抽 运激光作用下, Pr^{3+} 的基态吸收很弱,基态吸收主要 是 Yb^{3+} 产生的。 Yb^{3+} 吸收第一束抽运激光(波长 为 960 nm 的半导体激光)的能量跃迁到²F_{5/2}能级, Yb^{3+} 的²F_{5/2}能级与 Pr^{3+} 的¹G₄能级能量相差不多, 它们之间发生相互作用,产生能量传递, Yb^{3+} 将能 量传递给 Pr^{3+} , Pr^{3+} 获得能量跃迁到¹G₄能级,又由

图 3 Pr³⁺ 和 Yb³⁺ 的能级结构图

Fig. 3 Energy level structure of Pr³⁺ and Yb³⁺

于³P能级和¹G₄能级之间的能量差与第二束激光的能量相匹配,所以,在第二束激光(Ti 宝石激光)的作用下,处于¹G₄能级的 Pr^{3+} 产生激发态吸收,跃迁到³P能级。处于³P能级的 Pr^{3+} 向下辐射,就产生了上转换发光。

3 上转换荧光强度和激发光功率的 关系

要深入了解 Pr³⁺,Yb³:ZBLAN 玻璃中 Pr³⁺上 转换荧光产生的动力学过程,则需要建立描述系统 动力学过程的速率方程。

对于图 4 描述的整个上转换过程,可以用一组 简单的速率方程模型来描述

$$\begin{cases} \frac{dN_{0}}{dt} = -R_{1}N_{0} + N_{1}p + TN_{1}n_{0}; \\ \frac{dn_{0}}{dt} = n_{1}q_{10} + n_{2}q_{20} - TN_{1}n_{0}; \\ \frac{dn_{1}}{dt} = -n_{1}q_{10} - R_{2}n_{1} + n_{2}q_{21} + TN_{1}n_{0}; \\ \frac{dn_{2}}{dt} = R_{2}n_{1} - n_{2}q_{2}; \\ N_{0} + N_{1} = N; \quad n_{0} + n_{1} + n_{2} = n; \end{cases}$$

$$(1)$$

式中 R_1 , R_2 是两抽运激光的抽运速率; N_0 , N_1 分别

是 Yb³⁺ 的² F_{7/2}, ² F_{5/2} 能级的布居数, n_0 , n_1 , n_2 分别 是 Pr³⁺ 的³ H₄, ¹G₄, ³ P 能级的布居数。 p 是 N₁ 能 级的布居衰减率; q_{ij} 是从能级 i 到能级 j 的布居衰 减率; q_i 是能级 i 全衰减率; T 是 Pr³⁺, Yb³⁺之间的 能量传递率。

根据速率方程(1)式可以得到稳态速率方程,解 稳态速率方程可以得到当激光强度很小时,上转换 荧光强度将随着两抽运激光强度的增加而线性增 加,即:

$$L \propto I_1 I_2. \tag{2}$$

根据(2)式可知,为了增加上转换荧光强度,可 以通过增加两束激光强度来实现。由(2)式可知,当 固定 960 nm 的半导体激光器的激光强度时,寻址 点的发光强度和 820 nm 激光强度关系是线性的, 当 820 nm 激光强度增强时,寻址点的发光亮度增 强,反之,寻址点的发光亮度降低。由(2)式可知,当 固定 820 nm 的 Ti 宝石激光器的激光强度时, 960 nm激光单频双光子上转换发光引起的非寻址 点的暗亮和 960 nm 激光强度也成线性关系,非寻 址点暗亮也随着 960 nm 激光强度的增加而变亮。 因此可通过降低 960 nm 激光强度克服其在 ZBLAN:Pr,Yb³⁺玻璃中的单频上转换发光,来增 加图像的清晰度。

通过分析可知,为了使图像清晰,可以加大 820 nm激光强度,同时减少 960 nm 激光强度。但 是减少 960 nm 激光强度一方面可以降低非寻址点 的暗亮,另一方面,根据(2)式知这会引起双频上转 换荧光强度的降低,使图像的亮度降低,这里可通过 选用声子能量低的基质材料来保证图像清晰度。由 能级图 3 可以知道, Pr^{3+} 的¹G₄ 能级和³P₀ 能级间隔 与 Yb³⁺ 的²F_{5/2} 能级和²F_{7/2} 能级间隔的失配率 Δ*E* 约为 1200 cm⁻¹,所以在能量传递过程

$${}^{3} H_{4} (Pr^{3+}) + {}^{2} F_{5/2} (Yb^{3+}) \xrightarrow{ET1} {}^{1} G_{4} (Pr^{3+}) + {}^{2} F_{7/2} (Yb^{3+}) \xrightarrow{ET2} {}^{1} G_{4} (Pr^{3+}) + {}^{TT2}$$

 ${}^{2}F_{5/2}(Yb^{3+}) \xrightarrow{ET3} {}^{3}P_{0}(Pr^{3+}) + {}^{2}F_{7/2}(Yb^{3+})$ 中要有声子参与 ET3 能量传递过程,声子辅助的能 量传递几率 $P \propto \exp\left(\frac{-\Delta E}{h\omega}\right)$ 。当声子能量降低时, P 也跟着降低。ZBLAN 玻璃有非常好的声子光谱 (截止声子频率<580 cm⁻¹),这是由于 ZBLAN 玻 璃主要成分是锆、钡等重金属阳离子和阴离子氟,其 基本的振动模频率相对于硅玻璃很小,使得材料的 声子边带能量也相当低,这也是其红外透明截止频 率小的主要原因。同时低的声子能量也导致了掺杂 到材料中的稀土离子能级间的多声子无辐射弛豫速 率很低,使得这些稀土离子的辐射有高的量子效率, 许多硅玻璃掺杂材料中无法探测到的稀土离子能级 跃迁发光,在氟锆酸盐玻璃中都能观察到。正是由 于这个特点,再加上本身不错的化学和机械性能,稀 土离子掺杂的氟锆酸盐玻璃作为激光材料尤其是上 转换激光材料得到了广泛的关注和深入的研究。当 单频上转换在 ZBLAN 玻璃中发生时,需要有 3 个 声子参与上转换过程,双频上转换强度将明显高于 单频上转换强度。选用声子能量较小的 ZBLAN 玻 璃,再适当地降低 960 nm 抽运激光的强度,可以大 大降低单频上转换发光的强度。这种方法对提高信 噪比具有实用价值。

4 稀土离子的掺杂浓度对上转换荧光 强度的影响

Pr³⁺和Yb³⁺之间的能量传递主要由离子之间 的相互作用来完成。因为 Yb³⁺ 的²F_{5/2} 能级和 Pr³⁺ 的¹G₄ 能级的能量很匹配,它们之间的能量传递方 式是一种能量的共振转移。离子间要发生相互作 用,离子之间的距离就很重要了。在均质玻璃中,稀 土离子之间的距离主要由离子的浓度来决定。因此 稀土离子的掺杂浓度会对双频上转换荧光强度产生 一定的影响。由图 5 可知,在 ZBLAN 玻璃中 Pr³⁺ 的最佳掺杂摩尔分数为 0.5%。在此基础上,图 6 给出了 Yb³⁺ 的掺杂浓度与双频上转换荧光强度之 间的关系。由图 6 可以看出,随着 Yb³⁺ 浓度的增 加,荧光强度开始增大,说明 Yb3+浓度的增高使稀 土离子之间的能量传递作用增强。当 Yb³⁺浓度降 低时,离子之间的距离太远,不能产生有效的能量转 移;Pr³⁺和Yb³⁺之间的能量传递有很多种形式,当 Yb^{3+} 摩尔分数超过 1.5%时,荧光强度随 Yb^{3+} 的增

intensity and doped concentration of Pr³⁺

强度之间的关系

Fig. 6 Relation between doped concentration of ${
m Yb^{3+}}$ and two-frequency up-conversion fluorescence intensity

1991年,J.Y. Allain 等^[14]深入研究了 Pr³⁺和 Yb³⁺之间的能量传递方式,J.Y. Allain 介绍了 5 种能够发生在这两种离子之间的能量传递,图 7 给 出了其中 3 种,具体作用过程为

 ${}^{3} H_{4} (Pr^{3+}) + {}^{2}F_{5/2} (Yb^{3+}) \xleftarrow{ET1, ET2}{}^{1}G_{4} (Pr^{3+}) + {}^{2}F_{7/2} (Yb^{3+})$ ${}^{3} P_{0} (Pr^{3+}) + {}^{2}F_{7/2} (Yb^{3+}) \xleftarrow{ET3}{}^{1}G_{4} (Pr^{3+}) +$

$${}^{2}F_{r} \approx (Yh^{3+})$$

当 Yb³⁺ 的浓度太高时,会使反向能量传递 ET2'和另外的能量传递 ET3'出现,ET2'的出现使 得 Pr³⁺ 的¹G₄ 能级的布居数减少,上转换荧光强度 也随之降低;能量传递 ET3'的出现,也同样会减少 需要的荧光强度。另外,Yb³⁺ 的浓度太高,也会使 Yb³⁺ 之间的相互作用增强,Yb³⁺ 激发态的寿命减 少,从而减少了 Yb³⁺ 对 Pr³⁺ 的能量传递作用。

图 7 Pr³⁺和 Yb³⁺之间的能量传递

Fig. 7 Energy transfer between Pr^{3+} and Yb^{3+}

通过实验和分析可知,ZBLAN 玻璃中 Pr^{3+} 和 Yb^{3+} 的最佳掺杂摩尔分数是 0.5%和 1.5%。图 8 给出了几种不同样品在 960 nm 和 820 nm 激光共 同激发下交叉点的荧光光谱的对比。进一步证明了 前面得出的 ZBLAN 玻璃中 Pr^{3+} 和 Yb^{3+} 的最佳掺 杂浓度的正确性。

图 8 不同样品的荧光光谱的对比 Fig. 8 Fluorescence spectrum of different specimens

5 结 论

选择组分为 ZBLAN 玻璃为双频上转换 3D 立 体显示的基质材料,主要是由于其具有非常好的声 子光谱(截止声子频率<580 cm⁻¹)。在 ZBLAN 玻 璃中双掺杂 Yb³⁺和 Pr³⁺代替 Pr³⁺,通过 Yb³⁺对 Pr³⁺的增敏作用,可以有效增加 Pr³⁺的¹G₄ 能级的 布局,提高上转换发光的强度。通过建立速率方程 模型可知,当激光强度很小时,上转换荧光强度将随 着两抽运激光强度的增加而线性增加,即 $L \propto I_1 I_2$; Pr³⁺的¹G₄ 能级有较长的发光寿命,能较好地实现 荧光发射,增加频率上转换 3D 立体显示的可视性。 稀土离子的掺杂浓度对双频上转换荧光强度产生一 定的影响,ZBLAN 玻璃中 Pr³⁺和 Yb³⁺的最佳掺杂 摩尔分数为 0.5%和 1.5%。

参考文献

- 1 Ding Qinglei, Xiao Siguo, Zhang Xinghua *et al.*. The upconversion luminescent of Er³⁺/Yb³⁺ co-doped ZrO₂-Al₂O₃ powers[J]. Acta Physica Sinica, 2006, **55**(10): 5140~5144 丁庆磊,肖思国,张向华等. 980 nm 激发下 Er³⁺/Yb³⁺ 共掺 ZrO₂-Al₂O₃ 粉末的上转换发光特性[J]. 物理学报, 2006, **55**(10): 5140~5144
- 2 Jin Zhe, Nie Qiuhua, Xu Tiefeng *et al.*. Energy transfer and upconversion luminescence of Tm³⁺/Yb³⁺ co-doped lanthanumzinc-lead-tellurite glasses[J]. Acta Physica Sinica, 2007, 56(4): 2261~2267

金 哲, 聂秋华, 徐铁峰 等. Tm³⁺/Yb³⁺ 共掺碲铅锌镧玻璃的 能量传递和上转换发光[J]. 物理学报, 2007, **56**(4): 2261~2267

3 Dai Shixun, Li Xujie, Nie Qiuhua *et al.*. Upconversion luminescence in Yb³⁺ sensitized Er³⁺/Yb³⁺-codoped tellurite glasses[J]. *Acta Physica Sinica*, 2007, **56**(9): 5518~5525 戴世勋, 厉旭杰, 聂秋华 等. Yb³⁺ 敏化的 Er³⁺/Yb³⁺ 共掺碲酸 盐玻璃的上转换发光研究[J]. 物理学报, 2007, **56**(9): 5518~5525

- 4 Luo Jianqiao, Sun Dunlu, Zhang Qingli *et al.*. Upconversion luminescence in Er³⁺/Yb³⁺-codoped Gd₃Sc₂Ga₃O₁₂ laser crystals [J]. Acta Physica Sinica, 2008, **57**(12): 7712~7716 罗建乔,孙敦陆,张庆礼 等. Er³⁺/Yb³⁺共掺 Gd₃Sc₂Ga₃O₁₂ 晶 体的上转换发光[J]. 物理学报, 2008, **57**(12): 7712~7716
- 5 Gan Zongsong, Yu Hua, Li Yanming *et al.*. Investigation on upconversion luminescence of Tm³⁺ and Yb³⁺ codoped oxyfluorosilicate glass ceramics [J]. *Acta Physica Sinica*, 2008, 57(9): 5699~5704

甘棕松, 余 华, 李妍明 等. Tm^{3+}/Yb^{3+} 共掺氟氧硅铝酸盐玻 璃陶瓷 蓝色上转换发光研究 [J]. 物理学报, 2008, **57**(9): 5699~5704

6 Dong Liqiang, Huang Shihua, Jia Xiaoxia et al.. Studies on the dynamic process of upconversion green emission from Er³⁺ under square wave excitation[J]. Acta Physica Sinica, 2009, 58(3): 2061~2066

董力强,黄世华,贾晓霞等.方波激发下 Er³⁺上转换绿光发光 动力学过程的研究[J].物理学报,2009,**58**(3):2061~2066

7 Chen Xiaobo, Song Zengfu. Study on two frequency excitation upconversion in Pr(0.5)Yb(3):ZBLAN[J]. Science in China G, 2006, 36(2): 164~171 陈晓波,朱增福. Pr(0.5)Yb(3):ZBLAN 双频激发上转换的研

陈皖波, 禾增福. Pr(0.5) 10(3) 2DLAN 从列激及上转供的研究[J]. 中国科学 G 辑, 2006, 36(2): 164~171

8 Zhang Ruiping, Chen Xiaobo, Kang Dongguo. Computer dynamic simulation for three dimensional display based on twofrequency up-conversion [J]. J. Beijing Normal University, 2004, 40(1): 48~51

- 9 Li Chenxia, Kang Juan, Zheng Fei et al.. Upconversion luminescence of Ho³⁺/Yb³⁺ codoped oxyfluoride silicate glass ceramics[J]. Chinese J. Lasers, 2009, 36(5): 1184~1189
 李晨霞,康 娟,郑 飞等. Ho³⁺/Yb³⁺共掺的氧氟硅酸盐微 晶玻璃上转换发光[J]. 中国激光, 2009, 36(5): 1184~1189
- 10 Gao Xubo, Dong Xiangting, Fan Lijia et al.. Fabrication and characterization of Nd³⁺:YAG nanofibers[J]. Chinese J. Lasers, 2009, 36(6): 1517~1522
 高续波,董相廷,范立佳等. Nd³⁺:YAG 发光纳米纤维的制备 与表征[J]. 中国激光, 2009, 36(6): 1517~1522
- 11 Liu Qibin, Qu Wei. Effect of doping on microstructure and properties of BaTiO₃ ceramics sintered by wide-band laser[J]. *Chinese J. Lasers*, 2009, 36(9): 2409~2412
 刘其斌,曲 微. 掺杂对宽带激光烧结 BaTiO₃ 陶瓷组织与性能的影响[J]. 中国激光,2009, 36(9): 2409~2412
- 12 Yu Chunlei, He Dongbing, Wang Guonian *et al.*. The effects of Yb³⁺/Tm³⁺/Ho³⁺ doping concentration on 2 μm wavelength luminscence in germanium glasses[J]. *Acta Optica Sinica*, 2009, **29**(11): 3143~3147
 于春雷,何冬兵,汪国年等. 锗酸盐玻璃中 Yb³⁺/Tm³⁺/Ho³⁺

参杂浓度对 2 μm 发光的影响[J]. 光学学报, 2009, **29**(11): 3143~3147

- 13 Su Xingyu, Ju Haidong, Ye Renguang *et al.*. Luminescence properties of CaSi₂N₂O₂: Eu²⁺ phosphors codoped with Dy³⁺ or Gd³⁺[J]. Acta Optica Sinica, 2010, **30**(3): 844~848 苏醒宇, 鞠海东,叶仁广等. Eu²⁺, Dy³⁺ (Gd³⁺) 共掺杂 CaSi₂N₂O₂ 荧光粉发光性质[J]. 光学学报, 2010, **30**(3): 844~848
- 14 J. Y. Allain, M. Monerie, H. Poignant. Energy transfer in Pr³⁺/Yb³⁺ doped fluorozirconate fibers [J]. *Electron. Lett.*, 1991, 27(12): 1012~1014

张瑞萍,陈晓波,康洞国.双频上转换三维立体显示实时动态模 拟[J].北京师范大学学报,2004,40(1):48~51